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W ! �� at the Tevatron

Serban Protopopescu
for the CDF and D� collaborations
Physics Dept., Brookhaven National Laboratory,
Upton, NY 11973

We present results from the CDF and D� detectors on the production of W -bosons decaying to ��� at the

FNAL Tevatron from data taken between 1992 and 1996. From CDF comes the �rst observation of W charge

asymmetry in W ! �� �nal states, and from D� a new measurement of gW� =gWe , 1:003� 0:032.

1. Introduction

In this report we present recent studies of
W+jets production, with W ! �� , produced at
the CDF and D� detectors.
There are two compelling reasons to study

W ! �� events at the Tevatron. One is to pro-
vide a relatively clean sample of � -leptons, and
thus an opportunity to study the detector re-
sponse to � 's. The detection of � 's at the Teva-
tron is considerably more di�cult than of e's or
�'s, and relies mainly on identifying � hadronic
decays. The main characteristics of such decays
are narrow jets with low track-multiplicity. It is
not easy to di�erentiate such jets from the much
more commonly produced quark and gluon jets.
Final states with � 's may be of great importance
in Higgs and SUSY searches, and this fact pro-
vides a great incentive to improve the identi�ca-
tion of � 's.
The other compelling reason is that a measure-

ment of W ! �� production, compared to mea-
surements of W ! e� and W ! �� , can be used
to test lepton universality, a fundamental con-
cept in the Standard Model. D� reports a new
and more accurate measurement of gW� =gWe , while
CDF observes for the �rst time W charge asym-
metry in W ! �� , consistent with that observed
in W ! e� and W ! �� . Details of the CDF
and D� detectors can be found in [1] and [2]
and will not be described here. However, it is
worth pointing out that the central tracking re-
gion in D� has no magnetic �eld (unlike CDF),
so � identi�cation in D� relies mostly on infor-
mation from the �nely segmented calorimeter. In

contrast CDF relies heavily on tracking informa-
tion.

2. Results from CDF

CDF has already published a measurement
gW� =gWe = 0:97 � 0:07 based on an integrated
luminosity

R
Ldt = 4:1 pb�1 accumulated dur-

ing 1988-1989. The sample consisted of 284 can-
didates with an estimated background of 101
events, see [3] for details. In 1993-1994, 65K � -
triggers were taken with

R
Ldt=15.5 pb�1. The

trigger requirements were:

� E/T >20 GeV

� � trigger cluster j�j < 1:1

{ Charged track PT > 4:8 GeV/c

{ track matched to calorimeter trigger
cluster with ET > 10 GeV and

{ hadronic energy/em energy>0.125 and

{ number of calorimeter towers �2
towers have �� =15� and �� = 0:2.

Most of the events collected with this trigger
are from standard QCD jet production. To re-
duce the background signi�cantly a complicated
set of o�ine selection cuts had to be applied:

� seed track PT > 5 GeV/c within 10� of
calorimeter cluster

� additional tracks with PT > 1 GeV/c in-
cluded in cluster if within 30� of seed track.
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� E/T >25 GeV for E/T trigger, E/T >20 GeV
for � -trigger

� � cluster ET (� ) > 15 GeV

� No clusters with ET >10 GeV other than �

� No clusters with ET >5 GeV for �� > 150�

from �

� No events satisfying electron or muon selec-
tion cuts.

� Track isolation (isolated if no other track
with PT > 1 GeV/c in annulus 10� - 30� ).

After all o�ine selection cuts, there were 625
� candidates. Non-isolated events are used as a
background control sample. The purity of the
candidate sample can be judged by the charged
track multiplicity distribution shown in Fig. 1.
For QCD jets, one expects a uniform charged-
track multiplicity distribution between 1 and 5
while for � one expects most of the events to
have a multiplicity of 1 or 3. Furthermore, the
ratio of events with 1 charged track to those with
3 charged tracks can be predicted from the �
branching ratios. The event distributions were
used to obtain the fractions of signal and back-
ground, where the signal is modeled by Monte
Carlo, and the background shape by data that
is enriched in background. Figure 2 shows the
pT distribution for events with di�erent charged
track multiplicity, and 3 shows the energy dis-
tribution of charged tracks for di�erent charged
track multiplicity. The �gures demonstrate that
the data is well reproduced by a mixture of signal
and background (with a signal of � 400 events).
After �tting for the amount of signal as func-

tion of � separately for each charge, one can plot
the charge asymmetry, (N+ � N�)=(N+ + N�)
where N�(+) is number of � 's with - (+) charge,
folded about � = 0 as function of j�j, shown in
Fig. 4. There is clear evidence for a charge asym-
metry inW ! �� events, consistent with that ob-
served in other leptonic channels [4].

3. Results from D�

The results in this section were shown at
ICHEP98 [5]. In the period 1992-1996 D� ac-
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Figure 1. Charged track multiplicity distribution
in � candidates (CDF).

cumulated
R
Ldt = 16:8 pb�1 with a special (� )

trigger designed to select W ! �� events:

� Single interaction event (determined by
TOF detector).

� E/T >15 GeV

� 0:05 < EMF < 0:95 (EMF = electromag-
netic energy fraction)

� leading narrow jet ET > 20 GeV, j�j < 0:9

� No other jet with ET > 15 GeV within 40�

of the opposite direction of the leading jet
or within 30� of the E/T direction.

A less restrictive (� -bckg) trigger was also used
to get a background control sample

� Single interaction event

� leading jet ET > 20 GeV

� 0:05 < EMF < 0:95
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Log Likelihood Fit Results
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Figure 2. pT distribution of � candidates with 1
,2 ,and 3 charged tracks (CDF).

Events satisfying the � trigger have further se-
lection criteria o�ine to reduce the substantial
background from standard QCD jets:

� jZ � vertexj <60 cm

� no good electrons or muons

� � -jet 25 < ET < 60 GeV, j�j < 0:9

� � -jet width W <0.25 (see below)

� E/T >25 GeV

� no jet with ET > 8 GeV within 30� of
E/T direction

� no jet with ET > 8 GeV with 140� - 220�

of �

� no jet with ET > 15 GeV

� � -jet pro�le P >0.55 (see below)

After all cuts, there remains a sample of 1202
events. Fig. 5a) shows the � -jet ET distribution

Log Likelihood Fit Results

0

25

50

Echg (GeV)

Ntrk(10o) = 1

CDF 1992-1993
15.5 pb-1

0

25

50

0

8

Ntrk(10o) = 2

0

8

0 10 20 30 40 50 60
0

10

20
Ntrk(10o) = 3Data

QCDQCD
ElectroweakElectroweak
W→τν

0 10 20 30 40 50 60
0

10

20

Figure 3. Energy distribution of charged tracks
in � candidates with 1, 2, and 3 charged tracks
(CDF).

for these events, and Fig. 5b) the transverse mass
(mT ) calculated using the � -jet and E/T . These
distributions are compared to those from a data
based Monte Carlo to be described shortly. The
�rst 4 criteria above were also applied to events
satisfying the � -bckg trigger to get a background
control sample. The main separation between � -
like jets and QCD jets is obtained using the jet
shape variables width (W) and pro�le (P) which
exploit the �ne calorimeter segmentation and are
de�ned as follows:

W =

vuut
nX
i=1

(�i � �)2Ei
T

Ejet

T

+
nX
i=1

(�i � �)
2
Ei
T

Ejet

T

(1)

where i = 1 : : :n indicates the calorimeter � � �
tower number, the sum is over all towers in the
jet, and Ejet

T is the total ET of the jet.

P =
ET1 +ET2

Ejet
T

(2)
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Figure 4. W charge asymmetry as function of j�j
(CDF).

where ET1 and ET2 are the ET of the two leading
towers within the jet.
The � lepton identi�cation is quite sensitive to

noise in the calorimeter and to the underlying
event. To model the signal closely a data based
Monte Carlo (DBMC) was developed based on
actual W ! e� data. The procedure was to use
W ! e� events, generate a � with the same kine-
matics as the electron, let the � decay hadron-
ically and replace all the data associated with
the electron with simulated detector data from
the generated � decay. The � decays were gener-
ated with isajet [7], and the detector simulation
was performed using the GEANT-based [6] D�
simulation program. This procedure should re-
produce the distribution of events expected from
W ! �� , with the main shortcoming being that
the statistics is limited to the actual number
W ! e� events collected during the run in the
same �ducial volume as the W ! �� events, con-
taining only a single interaction per crossing (�
10,000).
The dominant background in theW ! �� �nal

sample comes from QCD events in which the jets

uctuate to produce su�cient E/T , and one of the
jets mimics a � hadronic decay. This background

Figure 5. pT and mT distributions of � candi-
dates. The points are the data, the histograms
prediction from DBMC (D� ).

can be estimated using the P distribution of the
control sample. As shown in Figs. 6b) and c) the
P distribution is signi�cantly di�erent for signal
and background. There are practically no signal
events with P < 0:35, while only a small fraction
of the QCD background have P > 0:55. Using the
number of events in the data with P < 0:35, Fig.
6a), the amount of QCD background for P > 0:55
can be estimated by relying on the distribution in
Fig. 6b). It is worth noting that the shape of the
P distribution for P < 0:35 in the data matches
quite well that expected from QCD background.
This method gives a QCD background of 106� 7
(stat) �5 (sys). Another signi�cant source of
background corresponds to events with signi�cant
noise in one calorimeter cell, they produce events
with � -like jets and E/T . This background is esti-
mated by a similar method, but instead of P the
variable used is ��, the angle between the closest
track to the calorimeter cluster and the � jet. The
background has no dependence on ��, while for
the signal it is sharply peaked. This method esti-
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Figure 6. Pro�le (P) distributions: a) � candi-
dates, b) QCD background c) DBMC (D� ).

mates the background from calorimeter noise to
be 81�14. Finally, there is a non-negligible back-
ground from Z ! �� events, which is estimated
using the isajetMonte Carlo to be 32�5 events,
and a very small background (3� 1 events) from
W ! e� events with the electron misidenti�ed as
a � . The jet width distributions before and after
pro�le cuts (background subtracted) are shown
in Figs. 7a) and b), and illustrate that the data
are well reproduced by the models for background
and signal.
The acceptance for W ! �� events, A, deter-

mined by applying geometric and kinematic cuts
to isajet Monte Carlo � 's is 0:2903 � 0:0007.
The e�ciency, � = 0:1307� 0:0034, is determined
by applying the trigger requirements and the of-

ine selection cuts to the DBMCW ! �� sample.
The errors are statistical. There are in addition
2.8% uncertainty in A� coming from a 3% uncer-
tainty in the energy scale and a 2.0% uncertainty
from the uncertainties in the � branching ratios
[8]. From the number of events after background
subtraction and the calculated value of A�, D�

Figure 7. Jet width (W) distributions a) no P
cut, b) after P > 0:55 cut. Points are background
subtracted data, solid histograms are DBMC, and
dashed histograms QCD (D� ).

obtains for �W �B(W ! �� )

2:38� 0:09 (stat:)� 0:10(syst:) � 0:13;

where the last error comes from the uncertainty
in the integrated luminosity. The results are sum-
marized in Table 1.
From the ratio of �W � B(W ! ��) to �W �

B(W ! e�) one can determine the ratio of the �
and the electron charged current couplings to the
W boson , gW� =gWe . The luminosity error cancels
completely in the ratio of cross sections, and there
is partial cancellation of systematic erros. Using a
previous measurement by D� of �W �B(W ! e�),
2:36� 0:02� 0:07� 0:13 [9] they �nd for gW� =gWe

1:004� 0:019 (stat:)� 0:026 (syst:)

The above value is consistent with unity, as ex-
pectated from lepton universality.
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Table 1
Summary of D� �(W ! ��) measurements

Number of Events

W ! �� Data Sample 1202
QCD Background 106� 7� 5
Noisy Events 81� 14

Z ! �� Background 32� 5
W ! e� Background 3� 1

A � �(W ! ��)

Br(� ! hadrons +�) (64:5� 2) %
A(W ! ��) 0.290
�(W ! ��) 0.127

W ! e� cut correction 1.03
A � �(W ! ��) 0.0379

Systematic Error on A � �

Monte Carlo Statistics �0:0010
Branching ratios �0:0008
Energy Scale �0:0011R

Ldt

Integrated Luminosity (16:84� 0:91) pb�1

� �Br

� �Br(W ! ��) 2:38� 0:09� 0:10nb
� �Br(W ! e�) 2:36� 0:02� 0:07nb

4. Conclusions

The CDF and D� experiments at the FNAL
Tevatron have demonstrated that it is possible to
detect � 's and extract interesting physics in spite
of the formidable background from QCD jets. D�
has obtained the most precise measurement of
gW� =gWe to date, see Fig. 8. CDF has the �rst
observation of a W charge asymmetry inW ! ��
events consistent with that observed in W ! e�
and W ! �� events. These results test � �e uni-
versality at high Q2 (� m2

W ). The techniques
used to identify � 's are likely to prove very valu-
able in the upcoming high luminosity run at the
Tevatron, particularly in multi-lepton �nal states
that are expected to be the bellweather signals of
physics beyond the Standard Model.

Figure 8. gW� =gWe measurements at hadron col-
liders
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